

Improved Fuel Flexibility by Addressing the Fundamentals of Combustion

Electric Power 2017 Chicago, IL

Prepared and Presented By:

Kristi McCall – Duke Energy

Ken Stover – Duke Energy

Shawn Cochran – Storm Technologies, Inc.

Outline

- Overview of Allen Steam Station
- Driving Factors of Fuel Switch
- Comparison of Coals
- Initial ILB Burn Results
- Action Plan Implemented by Duke and Storm Personnel
- Test Burn Findings & Results
- Conclusions

Overview of Allen Steam Station

- Boiler Design
 - 1950's CE Subcritical, Tangential Fire Boilers (Twin Furnace Design)
 - Superheat and Reheat Furnace
 - Common Steam Drum
- Pulverizer Design
 - (8) 633 Raymond Deep Bowl Mills 4 per Boiler
- Pressure Part Design/History
 - Platen vs. Pendant Tube Spacing
- Burner Design
 - First Generation Wide Range Burners
- Emission Control Systems
 - SNCR
 - ESP
 - ACI
 - WFGD
- Design Fuel
 - Eastern Bituminous

Factors Behind Fuel Switch

- 19th Annual ELECTRIC EPPOWER CONFERENCE + EXHIBITION
- A Need to Stay Competitive and An Economically Viable Source of Electricity
 - Abundance of Low Cost Natural Gas
 - Highly Efficient Combined Cycle Units
 - Numerous Supercritical Boilers in the Fleet

Comparison of Coals

ELECTRIC POWER CONFERENCE + EXHIBITION

- Allen Steam Station has historically fired boiler friendly CAPP – Central Appalachian coals
- Lower cost ILB Illinois Basin coals that were purchased were extremely boiler unfriendly
 - Sulfur content increased 262%
 - Iron content increased 345%
 - Chlorine content is 0.16% 0.19% on average
 - Reducing ash fusion temperatures are 500°F - 600°F lower
 - Free Swell Index (FSI) increased 6 pts
 - HGI increased 10 pts
 - HHV increased 1,000 Btu/lb

Description	Units	CAPP	ILB
Higher Heating Value	Btu/lb	11,525	12,287
Moisture	%	7.38	7.28
Ash	%	18.00	10.17
Sulfur	%	0.97	3.51
Volatile Matter	%	30.5	35.82
Ash Loading	lbm/MMBtu	13.96	8.28
SO ₂	lbm/MMBtu	1.69	5.71
B/A Ratio		0.16	0.65
HGI		44	53
FSI		1	7.1
Oxidizing Atmosphere			
Initial Deform.	۴F	XXXX	2,365
Softening	۴F	XXXX	2,402
Hemisphere	°F	XXXX	2,461
Fluid	۴F	XXXX	2,506
Reducing Atmosphere			
Initial Deform.	۴F	2,500	1,964
Softening	۴F	2,600	1,996
Hemisphere	۴F	2,700+	2,064
Fluid	۴F	2,700+	2,245

Coal Quality

19th Annual ELECTRIC POWER CONFERENCE + EXHIBITION

- Minerals in the coal they are a dynamic factor in the slagging characteristics in the boiler
 - Base/Acid Ratio Ranged from 0.57 0.78
 - Iron content ranged from 25% 30%

Initial ILB Burn Results

- 100% conversion to ILB coal under normal operating conditions due to limited coal blending opportunities/equipment design
- Severe slagging was observed in a matter of shifts
- This was seen during multiple attempts to fire ILB coals
- Firing to attain steam temperatures
 - Non-operational tilts
 - Air/Fuel dampers non-operational
 - RH sprays isolated
- Forced outages requiring explosive and hydro blasting
- Burner compartment fires

Plan of Action

- Duke and Storm worked together to develop a plan in order to burn the challenging ILB coals
- Prior to testing
 - All auxiliary air and fuel air dampers were stroked and visually verified internally
 - To ensure complete knowledge of coal quality, "real-time" samples were collected and sent off for analysis
 - Established test team:
 - Testing Coordinator
 - Site Liaison
 - Test Team Members
 - Management
 - Analyzed risk(s) associated with reliability during peak season
- Reviewed coal treat validity
- Tuned boiler on high ash CAPP coal first
- Initiated ILB tuning parameters
 - Based on CAPP data

Test Plan

- Areas to be addressed:
 - Pulverizers:
 - Dirty Air and Fuel Balance
 - Fuel Fineness
 - Air/Fuel Ratios
 - Flue Gas Measurements:
 - Furnace Exit
 - HVT Traverses to determine FEGT's, O₂, CO and NO_x
 - Economizer Outlet
 - Traversed ducts to evaluate flue gas constituents and determine air in leakage rates
 - Flyash Collection:
 - Insitu flyash samples were collected across each of the three air heater inlet ducts
 - Raw Coal Collection:
 - Raw coal samples were collected out of each hopper, each day

Initial Test Results

- Test results on CAPP coal
 - Pulverizer performance
 - Fineness levels were very low
 - 52% 65% passing 200 mesh
 - 2% 4% retained on 50 mesh
 - Classifier adjustments were made to address fineness prior to ILB coal

Initial Test Results

- Test results on CAPP coal
 - Flue gas measurements
 - Low in furnace excess oxygen levels with areas measuring <1%
 - Economizer exit testing revealed an average of 3% excess oxygen.
 - Approximately 5% air in leakage measured between furnace and excess oxygen probes

Initial Test Results

- Test results on CAPP coal
 - Flyash Analysis
 - 3-part Flyash analysis completed
 - Average fineness level 86%
 - Following classifier adjustments fineness improved to above 90%
 - LOI's improved throughout the testing/tuning on CAPP coal

ILB Test Burn Results

- Test results on ILB coal
 - Pulverizer performance
 - Classifiers were adjusted on 7 of 8 mills to improve fineness
 - Average of 74% passing 200 mesh
 - Average 1.2% retained on 50 mesh
 - Average mean particle size improved 26%

ILB Test Burn Results

- Test results on ILB coal
 - Flue gas measurements
 - Excess oxygen bias increased to provide desired average of 3% excess oxygen

ECTRIC POWER

CONFERENCE + EXHIBITION

- WB/Furnace DP's optimized to improve combustion.
- SOFA & CCOFA's optimized for combustion and steam temperatures

ILB Test Burn Results

- Test results on ILB coal
 - Flyash Analysis
 - 3-part Flyash analysis completed
 - Average fineness results within recommended range
 - LOI's remained relatively unchanged throughout the testing

Final Conclusions and Results

- The presence of an oxidizing environment is extremely important
- Fuel fineness levels must be optimized to minimize fuel imbalances and secondary combustion
- Aux air and Fuel air damper operation is critical to balancing in furnace excess oxygen
- Sootblower operation must be optimized (i.e. pressures and travel)
- Allen was able to successfully operate with <u>ZERO</u> coal treat throughout the summer with no slagging incidents
- Allen has continued to burn a combination of 100% ILB coal on Units 4 and 5.
- Post summer run boiler inspections noted no significant slag buildup in problem areas identified during the initial ILB test burn
- Budget impacts/equipment damage reduced by eliminating explosive blasting

Thank You

Kristi McCall Technical/Maintenance Manager Duke Energy – Allen Steam Station <u>kristi.mccall@duke-energy.com</u> Ken Stover Operation Coordinator Duke Energy – Allen Steam Station kenneth.stover@duke-energy.com

Shawn Cochran, P.E. V.P., Field Services Storm Technologies, Inc. <u>shawn.cochran@stormeng.com</u> 704-983-2040