

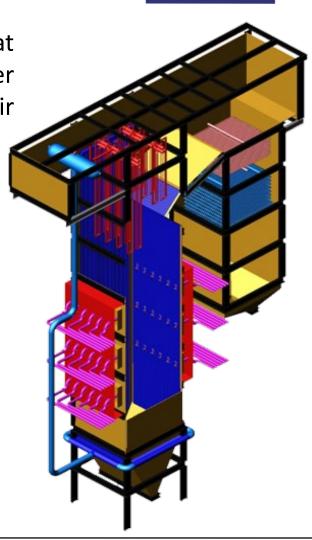
Effect of Air In Leakage on Heat Rate

EPRI Heat Rate Improvement Atlanta, GA

Shawn Cochran, P.E. Storm Technologies, Inc.

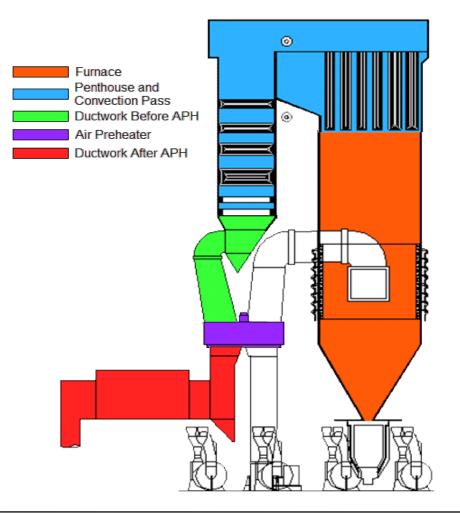
© STI, Storm Technologies, Inc. – All Rights Reserved

Outline



- Introduction to Air In Leakage
- Typical Sources of Air In Leakage
- ✤ Air in Leakage Detection Techniques
- Air In Leakage Field Test Results
- ✤ Conclusion

Introduction – What is Air In Leakage?


- Air that leaks into the gas stream absorbs heat that would otherwise be given up to the boiler or other surface (i.e. SH, RH, Economizer, APH). Tramp air infiltration can negatively impact the following:
 - Efficiency/Heat Rate
 - APH Performance
 - Fan Capacity
 - ESP/Baghouse Performance
 - Unit Load

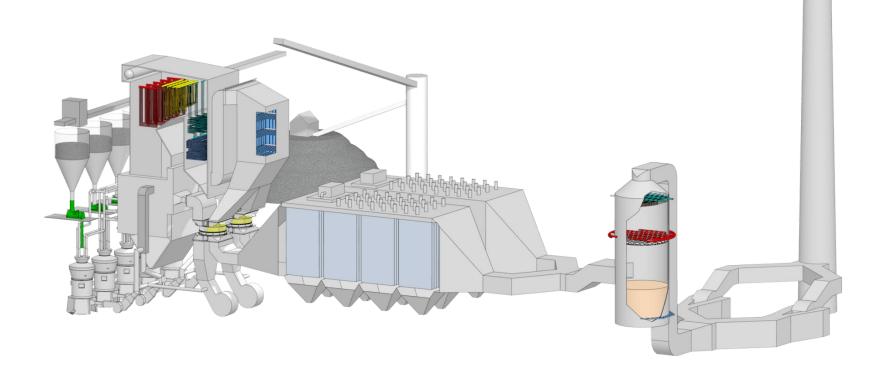
Where Does Air In-Leakage Occur?

- Location plays a large part of how much the leakage contributes to efficiency decreases and heat rate penalties.
- The main areas for leakage are
 - Main Furnace up to the first pendants
 - Penthouse and convection pass(includes SH and RH)
 - Ductwork after economizer but before the APH
 - APH
 - Ductwork after the APH up to the ID Fan

Air in Leakage Test Methods

• Online Methods

- Excess oxygen rise (preferred)
- Smoke tests and external inspections
- Infrared thermal imaging
- Audible methods
- Plant indications


Offline Methods

- Internal crawl through inspections (preferred)
- Smoke tests

Air in Leakage Measurement

- The more locations that can be measured the better air in leakage can be evaluated.
- Adequate and equally spaced test grid (i.e. 1 point per 9ft²)

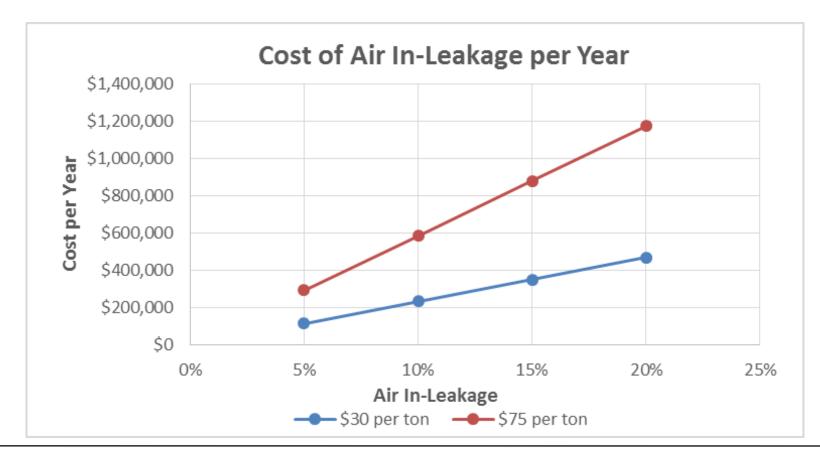
RESULTS STORM

Air in Leakage Measurement

- Typical measurement locations
 - Furnace exit
 - Economizer exit
 - SCR Inlet/Outlet
 - APH Inlet/Outlet
 - ESP/Baghouse Inlet/Outlet
 - Scrubber Inlet/Outlet
 - ID Fan Inlet/Outlet

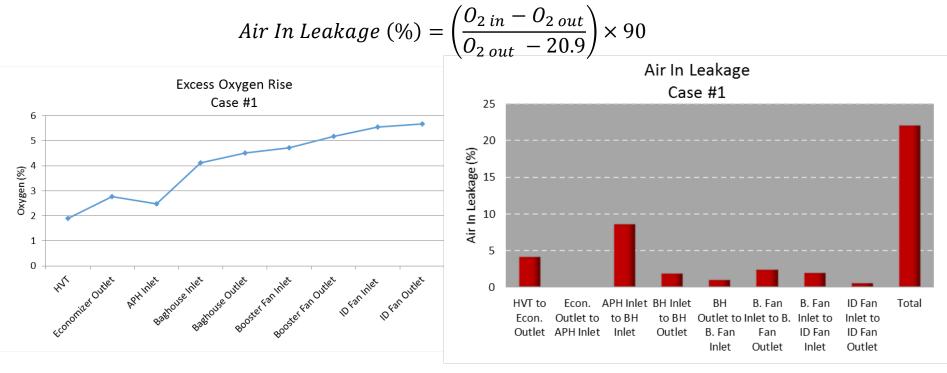
© STI, Storm Technologies, Inc. – All Rights Reserved

Typical Heat Rate Impact from Leakage


- Storm typically finds that air in leakage throughout the boiler can directly account for approximately 300 Btu/kWhr of heat rate penalties.
- Indirect heat rate penalties can exceed the 300 Btu/KWhr.

Controllable Variable Q		
Reduction of Air In-Leakage (Before APH)	Interrelated	240 Btu/kWh
Reduction of Dry Gas Loss	interrelateu	240 Btd/ KWII
Reduction of Coal Rejects	40 Btu/kWh	
Reduction of Air Heater Leakage	60 Btu/kWh	
Reduction of Carbon in Ash	100 Btu/kWh	
Reduction of De-Superheating Spray Water Flows		60 Btu/kWh
Achieve By:		
-Primary Airflow Optimizatio		
-Pulverizer Optimization and		
Fuel Line Balance		
Total		500 Btu/kWh

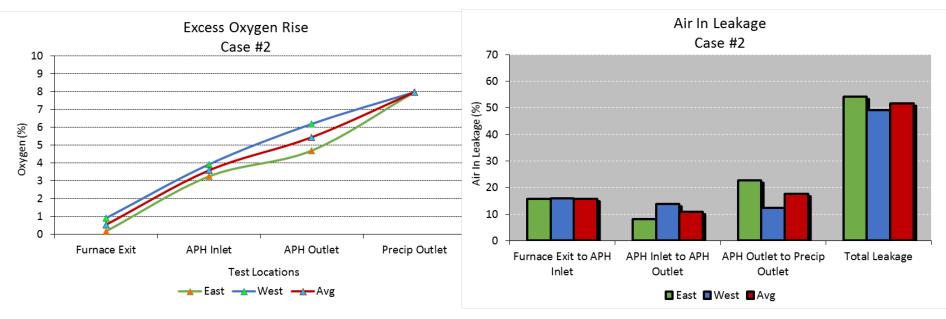
- Example of additional fuel costs required to heat ambient air to the air heater outlet temperature
 - Based on 500 MW, 80% capacity factor, 10,000 Btu/kWhr heat rate, 11,000 Btu/lb HHV


© STI, Storm Technologies, Inc. – All Rights Reserved

Air in Leakage Testing Case #1

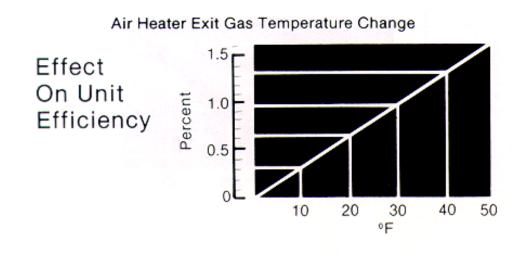
- Measurement Locations
 - Furnace Exit
 - Economizer Outlet
 - APH Inlet
 - Baghouse Inlet
 - Baghouse Outlet

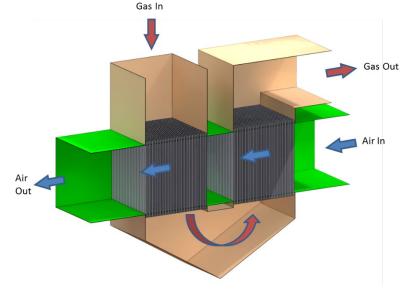
- Booster Fan Outlet
- ID Fan Inlet
- ID Fan Outlet



Air in Leakage Testing Case #2

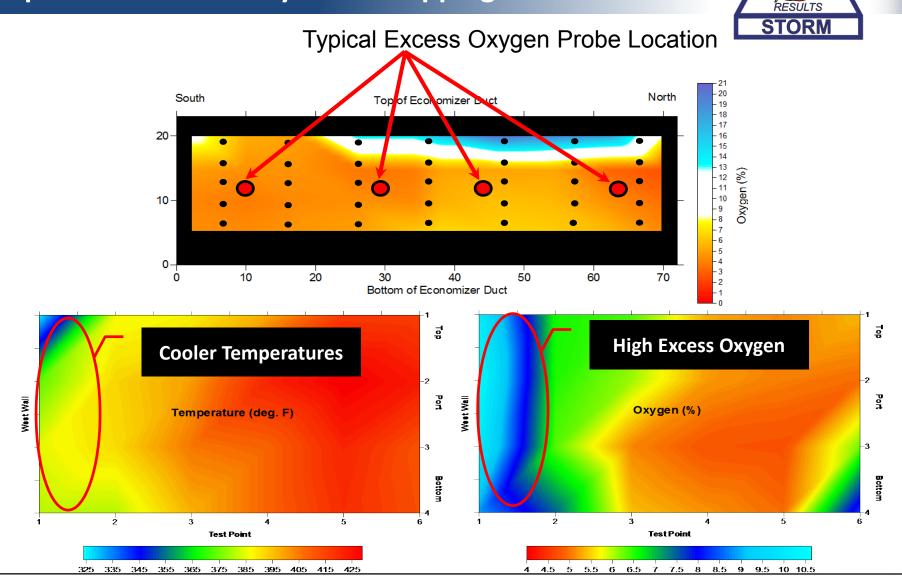
- Measurement Locations
 - Furnace Exit
 - APH Inlet
 - APH Outlet
 - Precip Outlet
- Average of ~50% air in leakage
- ~16% Air In Leakage from Furnace to APH Inlet!
- Unit was de-rated due to ID fan limitations





Air In Leakage Case #3

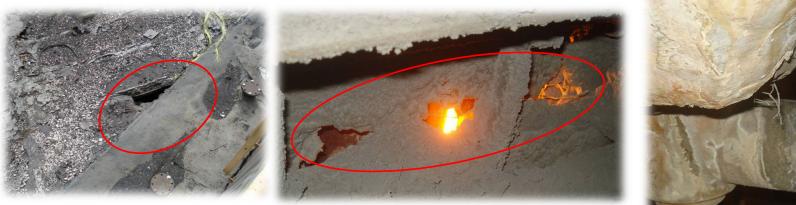
- Measurement Locations
 - APH Inlet
 - APH Outlet
- Corrected gas outlet temperature decreased 53 deg. F.


Voor	Percent	Exit Gas	Corrected Exit Gas	Gas Side	V Datia
Year Leakag		Temperature*	Temperature**	Efficiency	X-Ratio
2016	1.40%	337	340	65.30%	0.75
2015	26.30%	337	393	56.72%	0.65
*measured value with leakage					
**calculated value without leakage					

Importance of Point by Point Mapping

[©] STI, Storm Technologies, Inc. – All Rights Reserved

External Inspections



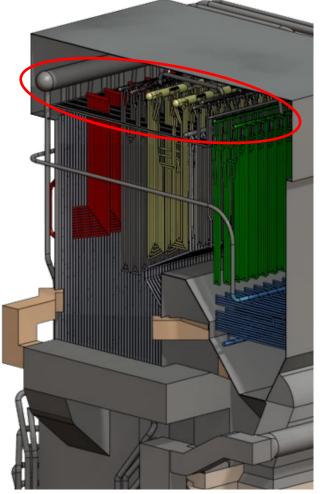
Furnace

Economizer Ash Hoppers

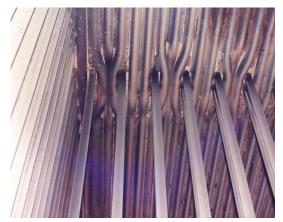
ESP Outlet duct

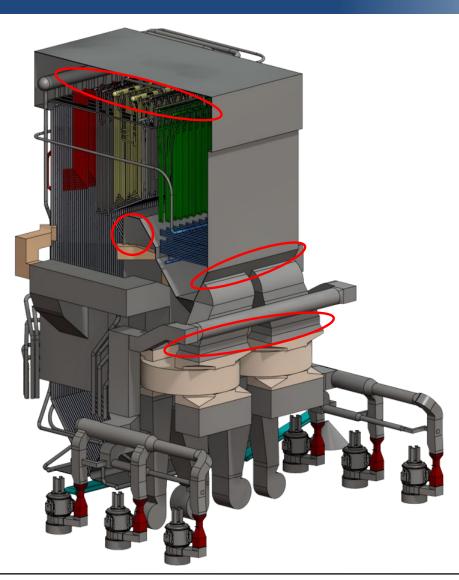
Furnace casing

Internal Inspections

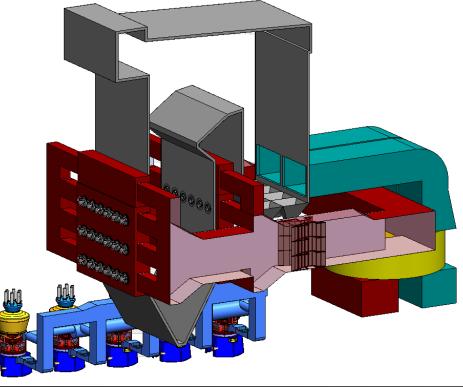

Lower Ash Hopper Damaged Seal (Due to In-Adequate Water Flow & Ash Build Up)

Lower Ash Hopper Seal Damage and Water Seal Damage Caused by Expansion

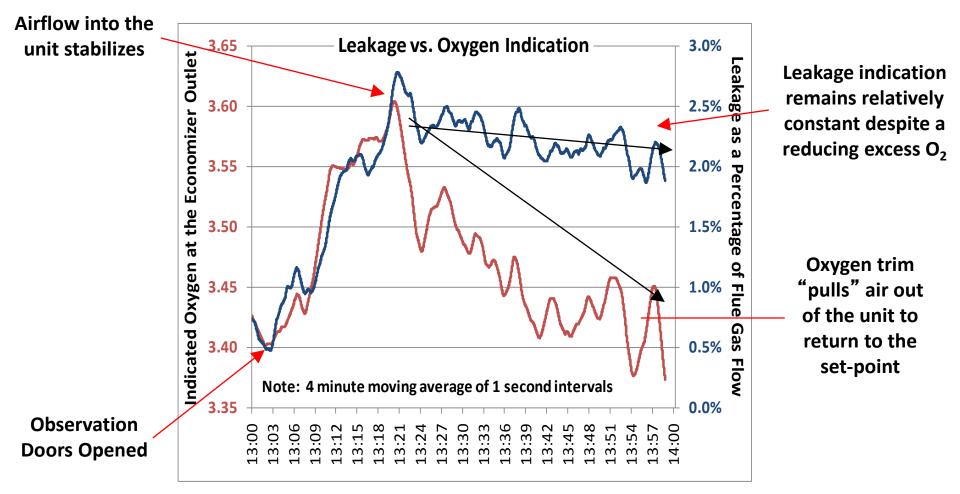

Internal Inspections



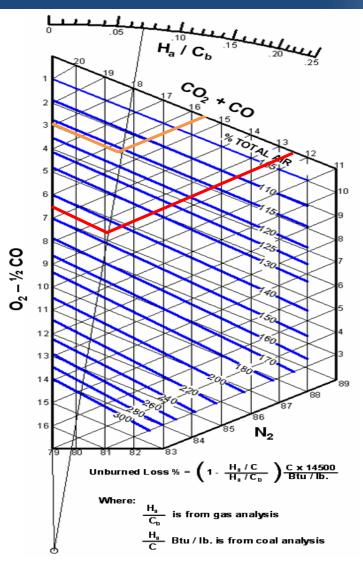
Internal Inspections



Online Air In Leakage Detection



- Accurate airflow measurement and excess oxygen measurement
 - Total secondary airflow measured within 3% of actual flow with total left and right venturis
 - Primary airflow measured within 3% of actual to each of the five pulverizers with venturis
 - Excess oxygen measured with 8 excess oxygen probes
 - Fuel flow measured via calibrated gravimetric feeders
 - Theoretical air calculation based off of given fuel constituents and excess oxygen curve


Online Leakage Monitoring

Accurate measurement of total air flow and excess oxygen at the economizer outlet is required!

Online Leakage Monitoring

- Evaluate oxygen rise between economizer outlet and stack
 - Utilize economizer outlet excess oxygen probes & stack CO₂ along with volumetric flue gas chart

Example:

Average excess oxygen probe indication = $3\% \approx 115\%$ Theoretical Air Stack CEMS CO₂ indication = $12.5\% \approx 145\%$ Theoretical Air

Air In Leakage (%) =
$$\left(\frac{O_{2 in} - O_{2 out}}{O_{2 out} - 20.9}\right) \times 90 = 21.9\%$$

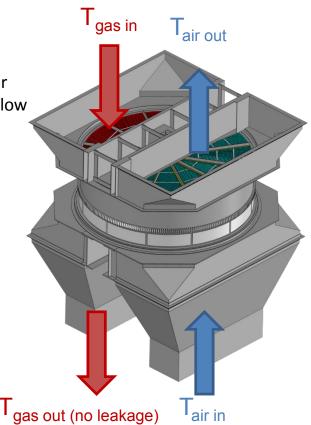
GENERAL DATA

S.F.	
A.F.	

FUEL ANALYSIS

Н	
0	
С	
Btu / Ib.	
H _a / C	

Online Leakage Monitoring



- Air Heater X-Ratio Monitoring
 - X-Ratio is the ratio of the heat capacity of the air flowing through the air heater as compared to the heat capacity of the flue gas

$$X \text{ Ratio} = \left(\frac{T_{gas in} - T_{gas out (no \text{ leakage basis})}}{T_{air out} - T_{air in}}\right)$$

- Tramp air in leakage into the boiler affects the X-ratio of the air heater
 - Increases ratio of flue gas through the air heater versus airflow through the air heater
 - Increases the corrected air heater exit gas temperature

Year	Percent	Exit Gas	Corrected Exit Gas	X-Ratio
	Leakage	Temperature*	Temperature**	A-Natio
2016	1.40%	337	340	0.75
2015	26.30%	337	393	0.65
*measured value with leakage				
**calculated value without leakage				

Boiler Efficiency Testing

- Improvement in boiler efficiency can lead to improved heat rates
- · Air in leakage upstream of the air heater is a stealth heat rate penalty
- PTC 4.0 does not take this air in leakage into account

 $Dry \ Gas \ Loss = 100 \times MqDFgi \times HdFgLvCr$

Where:

Dry Flue Gas Weight Entering APH (MqDFgi) = (MqDAi + MqWAi + MqFgF + MqWAdz) – MqWFgiQuantity of Dry Air Entering APH (MqDAi) = $MqThACr \times (1 + (XpAi/100))$ Percent Excess Air (dry basis) Entering APH(XpAi) = 100 ($MoThACr \times (20.95 - DVpo2i)$) Excess oxygen measured

at the APH Inlet

Conclusions

- Excess air in leakage can impact heat rate in multiple ways
 - Decreases heat transfer to the working fluid due to heating of ambient air
 - Increases volume of flue gas which affects ID fan
 - This can increase auxiliary power usage
 - Reducing atmospheres created by air in leakage can lead to
 - Increased spray flows, slagging, decreased reliability, poor LOI's, etc.
- Point by point mapping has proven over the years to be a very effective way of evaluating air in leakage
- Evaluating air in leakage on an annual basis will help plants identify potential problem areas early to minimize heat rate impact and repair costs.

Shawn Cochran, P.E.

Storm Technologies, Inc.

Albemarle, NC

www.stormeng.com

704-983-2040